
Module-1: Residue Theorem

1 Introduction

Let f(z) be analytic at a point z = z0. Then f(z) is analytic in some neighbourhood

Nδ(z0) of z0. If C is a positively oriented closed rectifiable curve contained in Nδ(z0),

then by Cauchy fundamental theorem we have
∫
C
f(z)dz = 0. However, if f(z) is not

analytic at finitely many isolated singularities inside C, then the above argument fails.

This means that each of these singularities contributes a specified value to the value of the

integral. This motivates to generalize Cauchy fundamental theorem to functions which

have isolated singularities. This generalization results in the Residue theorem. This result

is one of the most important and often used, tools that applied scientists need, from the

theory of complex functions.

Residue at a Finite Point

Suppose the function f(z) has an isolated singularity at z = z0 (6= ∞). Then in some

deleted neighbourhood of z0 (0 <| z − z0 |< δ), f(z) can be represented by Laurent’s

series of the form

f(z) =
∞∑
n=0

an(z − z0)n +
b1

z − z0
+

b2
(z − z0)2

+ . . . .

Then, the coefficient of 1/(z− z0) i.e. b1 is called the residue of f(z) at z0 and is denoted

by Res (f ; z0). Thus b1 = 1
2πi

∫
C
f(z)dz where C is any positively oriented simple closed

rectifiable curve enclosing z0 and contained in the neighbourhood.

The residue at the isolated singularity z = z0 (6= ∞) may also be defined as the

integral

1

2πi

∫
C

f(z)dz

where C is any positively oriented simple closed rectifiable curve lying in the domain

0 <| z − z0 |< δ which enclose z0 but no other singularity of f(z).
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The following theorem shows how can we calculate residue of a function which has a

pole of order m at the point z = z0.

Theorem 1. If f(z) has a pole of order m at z = z0, then

Res (f ; z0) =
1

(m− 1)!
lim
z→z0

dm−1

dzm−1
[(z − z0)mf(z)].

Proof. Since z0 is a pole of f of order m, in some deleted neighbourhood of z0 we can

write

f(z) = φ(z) +
b1

z − z0
+

b2
(z − z0)2

+ . . . +
bm

(z − z0)m
, (1)

where φ(z) is analytic at z = z0 and bm 6= 0. From (1) we get

(z − z0)mf(z) = (z − z0)mφ(z) + b1(z − z0)m−1 + b2(z − z0)m−2 + . . . + bm.

Thus,
dm−1

dzm−1
[(z − z0)mf(z)] =

dm−1

dzm−1
[(z − z0)mφ(z)] + b1 · (m− 1)!.

Since lim
z→z0

dm−1

dzm−1
(z − z0)mφ(z) = 0, we obtain from above

Res (f ; z0) = b1 =
1

(m− 1)!
lim
z→z0

dm−1

dzm−1
[(z − z0)mf(z)].

This proves the result.

Note 1. If z0 is a simple pole of f , then

Res (f ; z0) = lim
z→z0

(z − z0)f(z).

Theorem 2. Let f(z) be analytic at z0 with f(z0) 6= 0 and g(z) has a simple zero at z0.

Then

Res

(
f(z)

g(z)
; z0

)
=
f(z0)

g′(z0)
.

Proof. We put F (z) = f(z)
g(z)

. Since z0 is a simple pole of F (z), we have

Res (F ; z0) = lim
z→z0

(z − z0)F (z) = lim
z→z0

(z − z0)
f(z)

g(z)

= lim
z→z0

f(z)
g(z)−g(z0)
z−z0

=
f(z0)

g′(z0)
.

This proves the result.
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Theorem 3. Let f(z) be analytic at z0 such that f(z0) 6= 0 and g(z) has a zero of order

two at z0. Then

Res

(
f(z)

g(z)
; z0

)
=

6f ′(z0)g
′′(z0)− 2f(z0)g

′′′(z0)

3(g′′(z0))2
. (2)

Proof. Since the function g(z) has a zero of order two at z0, we have

g(z) = (z − z0)2ν(z),

where ν(z) is analytic at z0 and ν(z0) 6= 0. Thus

f(z)

g(z)
=
f(z)/ν(z)

(z − z0)2

has a pole of order 2, and its residue at z0 is given by

Res

(
f(z)

g(z)
; z0

)
= lim

z→z0

d

dz

[
(z − z0)2

f(z)

g(z)

]
= lim

z→z0

d

dz

[
f(z)

ν(z)

]
= lim

z→z0

f ′(z)ν(z)− f(z)ν ′(z)

(ν(z))2

=
f ′(z0)ν(z0)− f(z0)ν

′(z0)

(ν(z0))2
. (3)

Now from the relation g(z) = (z − z0)2ν(z), we obtain

g′(z) = 2(z − z0)ν(z) + (z − z0)2ν ′(z);

g′′(z) = 2ν(z) + 4(z − z0)ν ′(z) + (z − z0)2ν ′′(z);

g′′′(z) = 6ν ′(z) + 6(z − z0)ν ′′(z) + (z − z0)2ν ′′′(z).

These relations imply ν(z0) = g′′(z0)/2 and ν ′(z0) = g′′′(z0)/6. Incorporating these

values in (3) we can get the required result.

Example 1. Find the residues of the function f(z) = 1
(z3−1)(z+1)2

at its singularities.

Solution. The given function has simple poles at z = 1, ω, ω2 and a pole of order 2 at

z = −1, ω being the imaginary cube root of unity. Therefore,

Res (f ; 1) = lim
z→1

(z − 1)f(z)

= lim
z→1

1

(z + 1)2(1 + z + z2)
=

1

12
.
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Res (f ;ω) = lim
z→ω

(z − ω)f(z)

= lim
z→ω

1

(z + 1)2(z − 1)(z − ω2)
=

1

3
.

Res (f ;ω2) = lim
z→ω2

(z − ω2)f(z)

= lim
z→ω2

1

(z + 1)2(z − 1)(z − ω)
=

1

3
.

Res (f ;−1) = lim
z→−1

d

dz
[(z + 1)2f(z)]

= lim
z→−1

d

dz

(
1

z3 − 1

)
= lim

z→−1

−3z2

(z3 − 1)2
= −3

4
.

Example 2. Find the residue of the function f(z) = cot z at z = 0.

Solution. Here f(z) = cot z = cos z
sin z

= g(z)
h(z)

, say. Clearly g(z) is analytic at z = 0 and

g(0) 6= 0. Also h(z) is analytic at z = 0, h(0) = 0 and h′(0) 6= 0. Therefore,

Res (cot z; 0) =
g(0)

h′(0)
= 1.

Example 3. Find the residue of the function F (z) = z2+sin z
cos z−1 at its singular points.

Solution. Let f(z) = z2 + sin z and g(z) = cos z − 1. Now g(z) = 0 implies z =

2nπ, n ∈ I. Also g′(z) = 0 at z = 2nπ but g′′(z) = −1 at z = 2nπ. Moreover, f(z) has

no zero at z = 2nπ. Also f ′(2nπ) = 4nπ + 1 and g′′′(2nπ) = 0. Replacing these values

in (2) we obtain

Res(F (z); 2nπ) = Res

(
z2 + sin z

cos z − 1
; 2nπ

)
= −2(4nπ + 1), n ∈ I.

Residue at an Essential Singularity

In this case one has to expand the function into Laurent series. For instance, z = 0 is an

essential singularity of the function f(z) = e−1/z. The Laurent expansion of f(z) about

z = 0 is

1− 1

z
+

1

2!z2
− 1

3!z3
+ . . . .

Therefore, Res (e−1/z; 0) = −1.

Residue at the Point at Infinity
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Suppose that z =∞ is an isolated singularity of f(z). Then the residue of f(z) at z =∞

is defined as follows :

Res (f ;∞) = − 1

2πi

∫
C

f(z)dz

where C is any positively oriented simple closed contour outside of which the function f

is analytic and does not have any singularity other than the point at infinity.

Theorem 4. (Cauchy’s Residue Theorem)

Suppose that f(z) is analytic inside and on a simple closed contour C except for isolated

singularities at z1, z2, . . . , zn inside C. Then∫
C

f(z)dz = 2πi
n∑
k=1

Res (f ; zk).

Proof. Let C1, C2, . . . Cn be n circles having centers at z1, z2, . . . zn and radii so small

that they lie entirely within C and do not overlap (see Fig.1). Then f is analytic in the

Fig. 1:

region bounded by C and the circles C1, C2, . . . Cn. So by Cauchy’s integral formula

for multiply connected domains, we have∫
C

f(z)dz =
n∑
k=1

∫
Ck

f(z)dz. (4)

Since Res (f ; zk) = 1
2πi

∫
Ck
f(z)dz, k = 1, 2, . . . n, we obtain from (4) that∫
C

f(z)dz = 2πi
n∑
k=1

Res (f ; zk).

This proves the theorem.
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Theorem 5. (Residue Theorem for C∞)

Suppose f(z) is analytic in C∞ except for isolated singularities at z1, z2, . . . , zn, ∞.

Then the sum of its residues (including the point at infinity) is zero. That is,

Res (f ;∞) +
n∑
k=1

Res (f ; zk) = 0.

Proof. We consider the closed contour C containing all n singularities z1, z2, . . . , zn

located at a finite distance from the point z = 0. So by Cauchy’s residue theorem

1

2πi

∫
C

f(z)dz =
n∑
k=1

Res (f ; zk). (5)

Also

Res (f ;∞) = − 1

2πi

∫
C

f(z)dz. (6)

From (5) and (6) we obtain

n∑
k=1

Res (f ; zk) = −Res (f ;∞)

i.e. Res (f ;∞) +
n∑
k=1

Res (f ; zk) = 0.

This proves the result.

Example 4. Obtain Cauchy’s integral formula from Cauchy’s residue theorem.

Solution. Suppose that f(z) is analytic in a domain D with boundary γ. Also suppose

that f is continuous on γ and z0 is an arbitrary point inside γ. Let g(z) = f(z)
z−z0 . Then

g(z) has a simple pole at z0 and hence

Res (g; z0) = lim
z→z0

(z − z0)g(z) = f(z0).

Now applying Cauchy’s residue theorem on g(z) we obtain∫
γ

g(z)dz = 2πi · f(z0).

This gives

f(z0) =
1

2πi

∫
γ

f(z)

z − z0
dz,

which is the Cauchy’s integral formula.
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Example 5. Evaluate
∫
|z|=2

f(z)dz where f(z) = ez

z(z−1)2 .

Solution. Let C : | z |= 2. Clearly f(z) has a simple pole at z = 0 and a pole of order

2 at z = 1, both of which lie inside the curve of integration C. Therefore by Cauchy’s

residue theorem we have∫
|z|=2

f(z)dz =

∫
|z|=2

ez

z(z − 1)2
dz = 2πi[Res (f ; 0) +Res (f ; 1)].

Now

Res (f ; 0) = lim
z→0

zf(z) = lim
z→0

ez

(z − 1)2
= 1.

Res (f ; 1) = lim
z→1

d

dz
(z − 1)2f(z) = lim

z→1

d

dz

(
ez

z

)
= lim

z→1

zez − ez

z2
= 0.

Therefore, ∫
|z|=2

ez

z(z − 1)2
dz = 2πi[1 + 0] = 2πi.

Example 6. Evaluate
∫
|z|=3

z
z4−1dz.

Solution. Let f(z) = z
z4−1 . Here the curve of integration is C : | z |= 3. Clearly f(z)

has simple poles at z = ±1 and at z = ±i, all lies inside C. Therefore by Cauchy’s

residue theorem we have∫
|z|=3

z

z4 − 1
dz = 2πi[Res (f ; 1) +Res (f ;−1) +Res (f ; i) +Res (f ;−i)].

Now

Res (f ; 1) = lim
z→1

(z − 1)f(z) = lim
z→1

(z − 1)
z

z4 − 1
=

1

4
.

Res (f ;−1) = lim
z→−1

(z + 1)f(z) = lim
z→−1

(z + 1)
z

z4 − 1
=

1

4
.

Res (f ; i) = lim
z→i

(z − i)f(z) = lim
z→i

(z − i) z

z4 − 1
= −1

4
.

Res (f ;−i) = lim
z→−i

(z + i)f(z) = lim
z→−i

(z + i)
z

z4 − 1
= −1

4
.

Hence ∫
|z|=3

z

z4 − 1
dz = 0.
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